• Home
  • Current congress
  • Public Website
  • My papers
  • root
  • browse
  • IAC-20
  • C4
  • 3
  • paper
  • Variations and Control of Thrust and Mixture Ratio in Hybrid Rocket Motors

    Paper number

    IAC-20,C4,3,11,x56929

    Author

    Dr. Francesco Barato, Italy, University of Padova - DII/CISAS

    Coauthor

    Dr. Elena Toson, Italy, T4i

    Coauthor

    Prof. Daniele Pavarin, Italy, T4i

    Coauthor

    Mr. Enrico Paccagnella, Italy, Università degli Studi di Padova

    Coauthor

    Dr. Alessandro Ruffin, Italy, T4i

    Year

    2020

    Abstract
    Hybrid rockets motors have several attracting characteristics like simplicity, low cost, safety, reliability, environmental friendliness.   In particular, hybrid rockets can provide complex and flexible thrust profiles not possible with solid rockets in a simpler way than liquid rockets, controlling only a single fluid. Unfortunately, the drawback of this feature is that the mixture ratio cannot be directly controlled but depends on the specific regression rate law. Therefore, in the general case the mixture ratio changes with time and with throttling. Thrust could also change with time for a fixed oxidizer flow. Moreover, propellant residuals are generated by the mixture ratio shift if the throttling profile is not known in advance. The penalties incurred could be more or less significant depending on the mission profile and requirements.  In this paper, some proposed ways to mitigate or eliminate these issues are recalled, quantitatively analyzed and compared with the standard case.  In particular, the addition of energetic additives to influence the regression rate law, the injection of oxidizer in the post-chamber and the altering-intensity swirling-oxidizer-flow injection are discussed. The first option exploits the pressure dependency of the fuel regression to mitigate the shift during throttling. The other two techniques can control both the mixture ratio and thrust (at least in a certain range) at the expense of an increase of the architecture complexity. Moreover, some other options like pulse width modulation or multi-chamber configuration are also presented. Finally, a review of the techniques to achieve high throttling ratios keeping motor stability and efficiency is also discussed.
    Abstract document

    IAC-20,C4,3,11,x56929.brief.pdf

    Manuscript document

    IAC-20,C4,3,11,x56929.pdf (🔒 authorized access only).

    To get the manuscript, please contact IAF Secretariat.