SPACE SYSTEMS SYMPOSIUM (D1) Innovative and Visionary Space Systems Concepts (1)

Author: Mr. Sam Wagner Iowa State University, United States

Mr. Alan Pitz Iowa State University, United States Mr. Dan Zimmerman Iowa State University, United States Prof. Bong Wie United States

INTERPLANETARY BALLISTIC MISSILE (IPBM) SYSTEM ARCHITECTURE DESIGN FOR NEAR-EARTH OBJECT THREAT MITIGATION

Abstract

Asteroids and comets have collided with the Earth in the past and are predicted to do so in the future. This paper presents a preliminary conceptual design of an integrated space systems architecture (ISSA) for NEO deflection missions, which may utilize various options such as gravity tractors, kinetic impactors, or nuclear mitigators [1-4]. An existing flight-proven Delta IV Heavy vehicle is assumed as a baseline launch vehicle which can launch a 6,000 kg payload into an interplanetary trajectory with $C_3 = 25 \text{ (km/s)}^2$. The proposed baseline ISSA, which is modular, reconfigurable, and adaptable, consists of a Delta IV Heavy launch vehicle (with the Star 48 upper stage), a 1500-kg cruise vehicle (a Dawn-like spacecraft equipped with flight-proven ion engines), and a 4500-kg kill vehicle. The kill vehicle consists of a 1500-kg nuclear or kinetic-impact payload, 1500-kg propellant for terminal guidance/intercept, and 1500-kg spacecraft bus. Near a target asteroid the cruise vehicle will release the kill vehicle, and it will observe the deflection event during its flyby of the target asteroid (similar to Deep Impact mission). For a certain class of NEOs that may not require high-energy deflection techniques, the combined cruise/kill vehicle can be configured as a single 4000-kg gravity tractor (GT) to be placed in a standoff hovering position or as two 2000-kg GTs to be placed in a halo orbit around a target NEO. A slow-pull GT mission will require rendezvous and proximity operation near a target NEO. Two or three Delta IV Heavy launch vehicles will be required for a class of NEO deflection missions assumed in this paper although an actual number of launch vehicles will depend on the mission warning time, the size of a target NEO, the operational mission scenario, the overall mission reliability requirement, and many other factors. This paper focuses on a system-level assessment of the practical viability, performance, and operational flexibility of such a baseline ISSA to prepare for its actual development in the near future. Technological advances required for advanced spacecraft design, precision terminal guidance/intercept, standoff nuclear explosions, and control of multiple GTs in halo orbits are also discussed.

[1] Wie, B., "Dynamics and Control of Gravity Tractor Spacecraft for Asteroid Deflection," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008.

[2] Adams, R. B. et al., "Survey of Technologies Relevant to Defense from Near-Earth Objects," NASA-TP-2004-213089, NASA-MSFC, July 2004.

[3] Barrera, M. J., "Conceptual Design of an Asteroid Interception for a Nuclear Deflection Mission," AIAA Paper 2004-1481, 2004 Planetary Defense Conference: Protecting Earth from Asteroids, Orange County, February 2004. [4] Adams, R. B. et al., "Near Earth Object (NEO) Mitigation Options Using Exploration Technologies," presented at 2007 Planetary Defense Conference, Washington, DC, March 2007.