ASTRODYNAMICS SYMPOSIUM (C1) Attitude Dynamics, Modelling and Determination (6)

Author: Mr. Sangwon Kwon Osaka Prefecture University, Japan

Prof. Takashi Shimomura Osaka Prefecture University, Japan Prof. Hiroshi Okubo Osaka Prefecture University, Japan

POINTING CONTROL OF SPACECRAFT USING TWO SGCMGS VIA LPV CONTROL THEORY

Abstract

A control moment gyro (CMG) is a kind of actuator for spacecraft attitude control. In the case of smaller-sized satellites with limited resources, it is not a suitable option to increase hardware resources. Therefore, the problem of attitude control using a reduced number of CMGs has received considerable attention for decades and many studies to this problem have been performed in the previous decades in the area of underactuated spacecraft control [1],[2]. By using the law of angular momentum conservation, the objectives of pointing control of spacecraft using two single-gimbal control moment gyros (SGCMGs) are described as follows.

$$\begin{aligned} \omega &\to 0\\ \delta_e &\triangleq \delta - \delta_f \to 0\\ \phi_e &\triangleq \phi - \phi_f \to 0 \end{aligned}$$

where ω is the angular velocity of the spacecraft, δ is the vector of the gimbal angles of two SGCMGs, and ϕ is an Euler angle. The subscript f denotes the final state of parameters. To this control problem, we developed a switching controller that consists of a nonlinear controller based on the Lyapunov stability theory and an LQR controller in [1]. However, this switching controller is too complex, because it consists of multiple-steps. Therefore, in this paper, we develop another controller being simpler and more suitable than the former switching controller. In the development of this new controller, we propose a new method of pointing control using two SGCMGs via linear parameter-varying (LPV) control theory. The LPV control has advantages such that it provides guaranteed stability and performance over a wide range of varying parameters [3]. The nonlinear model of spacecraft using two SGCMGs in six degrees of freedom can be represented as an LPV system as follows.

$$\dot{x} = A(\delta, \psi)x + B(\delta, \psi)u$$
$$u = -K(\delta, \psi)x$$

where the gimbal angle vector δ and the Euler angle ψ are both scheduling parameters. The state feedback controller is developed on the basis of a gain-scheduled control technique for the LPV system. The gain-scheduled control approach is to find a Lyapunov function which guarantees overall stability and performance of the close-loop system. The design condition of such a controller is described by a set of linear matrix inequalities (LMIs). The original non-convex problem is transformed into a convex one and the nonlinear parameter relationship is described as a bound of a convex region in a parameter space [4]. Approximating this region by a set of successive LMIs, the state feedback gain $K(\delta, \psi)$ is successfully obtained. A numerical simulation demonstrates that the proposed method is highly effective for fast and stable pointing control of spacecraft.

References

- Kwon, S. and Okubo, H., "Angular Velocity Stabilization of Spacecraft Using Two Single-Gimbal Control Moment Gyros", *The 26th International Symposium on Space Technology and Science*, 2008d-16, 2008.
- [2] Yoon, H. and Tsiotras, P., "Spacecraft Line-of -Sight Control Using a Single Variable-Speed Control Moment Gyro", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, 2006, pp. 1295-1308.
- [3] Wu, F. and Prajan, S., "A New Solution Approach to Polynomial LPV System Analysis and Synthesis", Proceedings of the American Control Conference, 2004, pp. 1362-1367.
- [4] Shimomura, T., Fujita, Y., and Okubo, H., "Simultaneous Structure/Controller Optimal Design of Flexible Space Structures: Sensor/Actuator Placement and Control Design - Tangential-Line Linearizing Constraints", Journal of Japan Society for Aeronautical and Space Sciences, Vol. 56, No. 652, 2008, pp. 239-243.