MICROGRAVITY SCIENCES AND PROCESSES (A2) Science Results from Ground Based Research (4)

Author: Dr. Aaron Persad University of Toronto, Canada, aaron.persad@utoronto.ca

Prof. Charles Ward University of Toronto, Canada, charles.ward@utoronto.ca

STATISTICAL RATE THEORY EXAMINATION OF ETHANOL EVAPORATION

Abstract

A series of low-temperature (246 K < T_I^L < 267 K) steady-state ethanol evaporation experiments have been conducted to determine the saturation-vapor pressure of metastable ethanol. The measured interfacial conditions have been used with statistical rate theory (SRT) to develop an expression for the saturation-vapor pressure as a function of temperature, f_{srt}^{eth} . This expression is shown to be thermodynamically consistent because it gives predictions of both the evaporative-latent heat and the liquidconstant-pressure-specific heat that are in agreement with independent measurements of these properties. In each experiment, the interfacial-vapor temperature was measured to be greater than the interfacialliquid temperature: $\equiv \Delta T_I^{LV}$. When f_{srt}^{eth} is used in SRT to predict ΔT_I^{LV} , the results are shown to be consistent with the measurements. Other expressions for the saturation-vapor pressure that are in the literature are examined and found to be thermodynamically inconsistent, and do not lead to valid predictions of ΔT_I^{LV} .