MATERIALS AND STRUCTURES SYMPOSIUM (C2)

Space Structures I - Development and Verification (Space Vehicles and Components) (1)
Author: Dr. He Wei
China Academy of Launch Vehicle Technology (CALT), China, hewei79@sina.com
Prof. Dong Li
China Academy of Launch Vehicle Technology (CALT), China, lidong615@sina.com
Dr. Yu Luan
China Academy of Launch Vehicle Technology (CALT), China, lionyee@gmail.com
Mr. Tang Xiao-han
China Academy of Launch Vehicle Technology (CALT), China, txh1982@sina.com
Mr. Liu Hai-long
China Academy of Launch Vehicle Technology (CALT), China, liuhailong3@163.com Mr. Yuan Shui-lin
China Academy of Launch Vehicle Technology (CALT), China, yuanshuilin123@yahoo.com.cn
Mr. Lei Yong-jun
Department Engineering Mechanics, Dalian University of Technology, China, Leiyj108@nudt.edu.cn Mr. Li Gang
Department of Astronautical Science and Engineering, National University of Defense Technology
(NUDT), China, ligang@dlut.edu.cn
Mr. Huang Bin
China Academy of Launch Vehicle Technology (CALT), China, huangbbj@yahoo.com.cn
DYNAMIC ANALYSIS AND VALIDATION FOR ROTATING SEPARATION OF LM-5'S
LARGE-SCALE PAYLOAD FAIRING

Abstract

Separation strategy and structural design for payload fairing are key technologies during development of launch vehicle. In this paper, present strategy of fairing separation and simulation technique is reviewed. Then, rotating separation of LM-5's large-scale payload fairing is simulated through both multi-body dynamics and explicit structural dynamics, based on which, influence of elastic deformation and vibration responses on separation characteristic, enveloping space, and structural strength of the fairing are discussed. Furthermore, to estimate effects of atmosphere during separation experiment of the fairing, coupled Euler Lagrange method is employed. LM-5's fairing separation experiment results are introduced. Finally validity and accuracy for the analysis strategy are evaluated by the experiment results.

