SPACE PROPULSION SYMPOSIUM (C4) New Missions Enabled by New Propulsion Technology and Systems (6)

Author: Dr. Toru Shimada

Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, Japan

Mr. Tomoaki Usuki

Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, Japan

CONCEPTUAL STUDY ON FLIGHT DEMONSTRATION OF MIXTURE-RATIO-CONTROLLED THROTTLING OF HYBRID ROCKET

Abstract

Results of conceptual study on technology demonstration in flight of a newly proposed hybrid rocket (HR) being enabled mixture-ratio-controlled throttling (MRCT) are described in this paper. The proposed system, named Altering-intensity Swirling-Oxidizer-Flow-Type (A-SOFT) hybrid rocket^[1], is essentially-non-explosive and equipped with an MRCT technology. By performing a multi-objective optimization of A-SOFT HR, it has been shown that MRCT is remarkably effective for expanding mission applicability of a sounding rocket^[2]. The A-SOFT is realized by independently modulating axial and tangential oxidizer mass flow rates so that both thrust and mixture ratio (O/F) are simultaneously controlled.

In most cases, during throttling of a hybrid rocket, O/F varies in accordance with the (1-n)th power of the oxidizer mass flow rate, where n is usually in the range of 0.5-0.8. So, the propulsion performance deteriorates remarkably in throttling down at lower-than-optimum O/F, or in throttling up at larger-than-optimum O/F, since the specific impulse is usually an upwardconvex function of O/F^[3]. From launch-system-wise viewpoints, one of the most serious problems caused by O/F shift is the resulting propellant residue^[4]. So, MRCT is one of the most-important key technologies for the achievement of high-energy mission, such as a satellite launch, of hybrid rockets in space transportation.

Mission requirements for the technology demonstration of MRCT of a hybrid rocket in flight, are to demonstrate 1) capability of designing a compact thrust chamber employing a method of high fuel regression rate, 2) capability of lowering propellant residual and of wide-range thrust control with MRCT technology, and 3) capability of re-ignition in space. During the flight demonstration, for a feedback control of both two quantities being assured, real-time on-board measurements of the fuel web-thickness and of the combustion pressure have to be done.

References

- [1] Shimada, T., et al., paper 2980899, Space Propulsion, 3AF, Cologne, 2014
- [2] Usuki, T. and Shimada, T., IAC-15-C4.2.3, International Astronautical Congress, Jerusalem, 2015
- [3] Karabeyoglu, A., et al., AIAA 2014-3851, Propulsion and Energy Forum, Cleveland, July 2014
- [4] Ozawa, K. and Shimada, T., AIAA 2015-3832, Propulsion and Energy Forum, Orlando, July 2015