HUMAN SPACEFLIGHT SYMPOSIUM (B3) Utilization & Exploitation of Human Spaceflight Systems (3)

Author: Dr. Yoshihiro Urade Osaka Bioscience Institute, Japan

ORPHAN DRUG DEVELOPMENT FOR DUCHENNE MUSCULAR DYSTROPHY BY PROTEIN CRYSTALLIZATION IN SPACE

Abstract

Duchenne muscular dystrophy (DMD) is one of the most common types of muscular dystrophy, affecting about 1 out of 3,500 boys. DMD is a severe X-linked muscle disease characterized by progressive skeletal muscle atrophy and caused by mutations in the gene of dystrophin, a cytoskeletal protein. There is still no cure for this disastrous disease. We found that grouped necrotic muscle fibers in patients with DMD expressed hematopoietic prostaglandin (PG) D2 synthase (H-PGDS), which catalyzes the biosynthesis of PGD2, an allergic and inflammatory lipid mediator. We obtained very high quality crystals of human recombinant H-PGDS in complexes with a variety of inhibitors, whose half maximal inhibitory concentrations (IC50s) were in the sub micro-molar range, by the counter-diffusion method onboard the ISS. We determined the detailed three-dimensional structures of H-PGDS/inhibitor complexes by X-ray diffraction analysis of the microgravity-grown crystals using an intense X-ray at SPring-8 synchrotron facility. Based on the fine structure of the inhibitor within the catalytic pocket of human H-PGDS, novel potent inhibitors TFC-007 and TAS-205 were developed, whose IC50 value was 20 nM. Both compounds prevented the expansion of muscular necrosis and muscle atrophy without any side effects by chronic treatment of genetically dystrophin-deficient mdx mice. Clinical trials of TAS-205 for treating DMD patients have begun sponsored by Taiho Pharmaceutical Co. Ltd. at National Center of Neurology and Psychiatry in Japan from Sept in 2014. Phase 1 study of single and multiple doses of TAS-205 in 21 patients was successfully finished to confirm the safety of this drug (see the entry in clinicaltrials.gov, NCT02246478). This is a real milestone to establish drug therapy for DMD patients. We believe that TAS-205 is able to slow down the progression of DMD boys remarkably. The fine structure of the drug-binding pocket of human H-PGDS is very useful to theoretically and inexpensively develop follow-up compounds, whose chemical structures and metabolism are different from TAS-205. Those drugs are also useful for the treatment of other PGD2-related inflammatory diseases in muscular or nervous tissues. In 2014, we started a new project entitled "Research Base Formation of Space Science of High Quality Protein Crystallization Technology" funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.