67th International Astronautical Congress 2016 Paper ID: 34454

MICROGRAVITY SCIENCES AND PROCESSES SYMPOSIUM (A2)
Facilities and Operations of Microgravity Experiments (5)

Author: Mr. Benjamin Weps
DLR (German Aerospace Center), Germany

Mr. Daniel Liidtke
German Aerospace Center (DLR), Germany
Dr. Olaf Maibaum
German Aerospace Center (DLR), Simulation and Software Technology, Germany
Dr. Andreas Gerndt
German Aerospace Center (DLR), Simulation and Software Technology, Germany

MODEL-BASED SOFTWARE ARCHITECTURE FOR A COLD GAS EXPERIMENT ON A
SOUNDING ROCKET

Abstract

The MATUS-1 mission aims to bring atom-optical experiments on a sounding rocket that performs a
parabolic trajectory with an apogee of 250 km above the surface. This mission allows performing exper-
iments with ultra-cold gases for around 6 minutes in a microgravity environment. Besides the scientific
goals in the area of quantum-optics, other important objectives of the mission are miniaturization and
further development of laser systems, vacuum components, quantum sensors, and other related technolo-
gies. This paper presents the software architecture of the main payload computer for the MAIUS mission
which controls the experiments autonomously during flight and provides a telemetry and telecommand
interface to monitor experiments and influence experiment sequences if necessary. The on-board com-
puter runs the control software which makes use of DLR’s Tasking Framework to concurrently execute the
different software modules. Besides the modules for data collection, filtering and evaluation, a sequence
player is developed to control the experiment apparatus. The sequence player controls at which point
in time which parameterized experiment will be conducted. The sequences describe all necessary com-
mands to the experimental hardware (shutter, lasers currents, camera triggers, etc.). The autonomous
control of the experiment requires a non-linear execution of sequences. There are branches needed to
optimize several parameters, for example laser currents. This requirement is implemented with an ex-
periment execution graph. To enable an intuitive way to edit the experiment flow a graphical domain
specific language (DSL) has been developed. Also to reduce sources of errors in the driver development,
we designed textual DSLs in combination with code generators. This increased the level of automation
in the software development significantly. Four different DSLs were designed in a layered architecture:
Card DSL, Stack DSL, Subsequence DSL, and Sequence DSL. Each of these DSLs has its own syntax and
semantics, which uses references to the layer below. Code generators transform the abstract hardware
descriptions and experiment sequences to C++ code. In addition to syntactical validation of the DSL
models, semantic and logical checks of the cards, stacks, sequences and the experiment flow graph are
performed to ensure consistency and to prevent errors. Our approach has the benefit of an increased
performance at runtime due to generated and compiled code, compared to interpreted driver descriptions
and experiment sequences. More importantly, runtime errors can be prevented since the descriptions are
validated during generation and the resulting code only depends on code generation templates.

oral



