70th International Astronautical Congress 2019 Paper ID: 53950
oral

52nd TAA SYMPOSIUM ON SAFETY, QUALITY AND KNOWLEDGE MANAGEMENT IN SPACE
ACTIVITIES (D5)
Quality and safety, a challenge for traditional and new space (1)

Author: Mr. Jan Sommer
German Aerospace Center (DLR), Germany

Dr. Andreas Gerndt
German Aerospace Center (DLR), Simulation and Software Technology, Germany
Mr. Daniel Liidtke
German Aerospace Center (DLR), Germany

AUTO-CODING DATA TYPE FRAMEWORK FOR THE OSRA USING MODERN C++

Abstract

The model-driven software development paradigm promises to increase the quality of flight software.
We propose a new model-based data type framework written in modern C++4-, which takes auto-coding
into account from the beginning. The goal of the framework is to realize type safety as well as value
consistency and to provide an intuitive interface to the application developer for defining and working
with data types. We use language features introduced with the modern C++ standards to allow extensive
validity checks at compile time and additional checks at run-time. At the same time we do not use language
features which are generally forbidden in an onboard software context, e.g., dynamic memory allocation
or exceptions.

In order to test the feasibility of our code generation framework we use the Onboard Software Reference
Architecture (OSRA) as input model for our generator. The European Space Agency developed OSRA
with the goal to capture all aspects of modern onboard software, including the definition of data types,
in a comprehensive model for later code generation.

We generate the source code from OSRA models in two steps. First, we transform the graphically
declared types of OSRA into an ASN.1 textual representation. In return, manually created ASN.1 data
type definitions are registered in the OSRA model as external types. The bidirectional integration means
that data types, which have been constructed in ASN.1 notation, can also be used inside OSRA models.
This helps maintaining more complex data structures in textual form and enables the use of complex data
sets from existing projects like TASTE or PATAS to test the feasibility and the limitations of the type
system. In the second step the final C++ source code is generated from the ASN.1 data type descriptions.

The proposed data type framework provides auto-generated type definitions and automatically avoids
common sources of errors like faulty initialization, out-of-bound access and accidental range overflows
by introducing automatic checks. These checks cause compile time errors, if possible, and run-time
errors otherwise. In order to provide developers with a practical solution, efforts were made to facilitate
integration with existing code bases and third party libraries. We strive to generate complete onboard
software projects from the OSRA component model in the future. The data type system provides therefore
the basis for that endeavor as it determines the way how the software will exchange data and how the
developer will need to interact with them.



