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Abstract

An innovative approach to robust trajectory optimization will be discussed in which the final state
error of a trajectory is minimized directly. Previous trajectory optimization methods have obtained
robustness by minimizing the expected value of fuel use or by implementing reliability constraints to
ensure that a fuel-optimal trajectory remains feasible under uncertainty. The approach taken in this paper
will forgo fuel-optimality in order to find the most robust, minimum-error solution. Directly minimizing
the error statistics of the final state may be useful for spacecraft orbiting in the sensitive microgravity
environments around small bodies, where fuel requirements are low but uncertainty is large. Additionally,
minimum-error optimization may be preferred for maneuvers where accuracy is of upmost importance,
such as precision docking of crewed spacecraft. The minimum-error approach will also be extended to a
dual minimum-error and minimum-fuel optimization through a weighted cost function. A dual-objective
optimization will provide valuable insight into a trajectory design space and the trade-off between fuel-
optimality and robustness. This analysis will consider two sources of uncertainty: initial state error (with
covariance given by an uncertain navigation solution) and multiplicative control noise (for example, a
thrust error that is proportional to the thrust magnitude). The minimum-error cost, J, will be a function
of the expected value of the final state error, δxtf , as seen in the following equation:

J = E[δxT
tf
δxtf ]. (1)

The linearized dynamics of the state error with respect to a nominal trajectory can be described with
the following stochastic differential equation:

d(δxt) =
∂f(x,u, t)

∂x
δxtdt+Bδu(t). (2)

The control error δu will be modeled as a continuous Gaussian white noise signal. Ito calculus can be
used to compute the expected value of the state deviation at the final time, and the cost function can be
reformulated as

J = trace
(

Φ(tf , t0)Px0x0
ΦT (tf , t0)

)
+

∫ tf

t0

trace
(
σ2
qΦ(τ, tf )Bu(τ)uT (τ)BT ΦT (τ, tf )

)
dτ. (3)

The minimum-error cost function takes the Bolza form and can be solved with traditional indirect
optimal control methods. The minimum-error solution will be the open-loop continuous control law that
minimizes the previous equation. Minimum-error optimization has been demonstrated for linear, time
invariant systems (such orbit maneuvers in the Clohessy-Wiltshire equations) and nonlinear astrodynamics
systems such as the two-body problem. Robust solutions will be compared to fuel-optimal solutions and
verified through Monte Carlo simulations. It will be shown that minimum-error trajectories can differ
significantly from fuel-optimal trajectories, and can provide significant improvements in robustness.
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