Paper ID: 57633 student

IAF SPACE EXPLORATION SYMPOSIUM (A3) Virtual Presentations - IAF SPACE EXPLORATION SYMPOSIUM (VP)

Author: Ms. Yuan ZHONG School of Aerospace, Tsinghua University, Beijing, China

Mr. Shiyu Chen
Tsinghua University, China
Dr. Hexi Baoyin
Tsinghua University, China

IMPACTOR TARGETING MANEUVER SYSTEM FOR 2016HO3 PROBE

Abstract

Asteroid 2016HO3 is considered as the most stable quasi-satellite of Earth and has been a new focus of mission target. China plans to launch a probe mission to this asteroid, consisting of a mother flyby spacecraft and an impactor spacecraft. The impactor spacecraft hits the target with a high speed to make a crater. Then the mother flyby spacecraft can observe and take high-resolution images of the crater for scientific research.

Impacting probe missions puts forward a higher requirement for navigation and guidance to ensure a precise impact. Nowadays, with the improvement of on-board computers and sensors for navigation, especially with advanced optical technology, autonomous optical navigation system has become a significant method for navigation. AutoNav system is the first autonomous optical navigation system used in Deep Impact mission, which made a precise impact to Temple 1.

However, the size of 2016HO3 is likely between 40 and 100 meters, which is nearly 1/100 of the size of Temple 1 (14km*5km*5km in size). The extremely smaller size of target poses significant challenges for navigation and guidance because the asteroid-relative trajectory accuracy should be improved better than 40 meters. Moreover, the time for impactor targeting maneuver is also limited because cameras can only capture the smaller-sized asteroid 2016HO3 from a closer distance.

Therefore, based on the requirement for navigation and limitation of volume and fuel, we present a new model and algorithm for impactor targeting maneuver system for 2016HO3 probe. The model has a thrust unit, consisting of 10 propulsion devices towards different directions, which can couple attitude and orbit control, a ranger-finder and a fixed on-board camera. The target is tracked by 'following bright spot' algorithm. By processing images taken by on-board camera and data taken by ranger-finder, the impactor can compute asteroid-relative position and velocity. Then impactor targeting maneuver system will determine the direction and duration of maneuver, which can make the impactor slew to a proper attitude to point to the nucleus of target. At last, we conduct a few numerical simulations with different impacting speeds for validation. The results of simulations are encouraging, and the proportion of a successful impact is above 99.2 percent.