IAF ASTRODYNAMICS SYMPOSIUM (C1) Mission Design, Operations & Optimization (2) (5)

Author: Mr. Nishanth Pushparaj The Graduate University for Advanced Studies, Japan

Dr. Nicola Baresi Surrey Space Centre, University of Surrey, United Kingdom Dr. Yasuhiro Kawakatsu Japan Aerospace Exploration Agency (JAXA), Japan

MARTIAN MOONS EXPLORATION TRANSFER ANALYSIS BETWEEN PLANAR AND SPATIAL QSOS AROUND PHOBOS

Abstract

Quasi-satellite orbits (QSO) are considered stable retrograde parking orbits around Phobos for JAXA's upcoming robotic sample return mission MMX [1]. During the proximity operations of MMX, the spacecraft inserted in a high altitude QSO will gradually descend to lower altitude QSOs with suitable transfer and station-keeping techniques between different relative QSOs. Preliminary analysis of two-impulsive planar transfers between relative retrograde orbits utilizing the bifurcated QSOs families is studied to estimate the V costs and Time of Flights of the transfers [2]. In spatial transfers, trajectories utilizing the invariant manifolds of unstable 3D-QSOs connecting planar QSOs are studied [3]. However, these intermediate 3D-QSOs are weakly to highly unstable and require additional station-keeping strategies to perform MMX scientific observations [4]. These transfer trajectories have a longer flight time and might require minor correction maneuvers along the transfer paths. In this paper, an orbital maintenance strategy [5] that suppresses and eliminates linear dynamical instability of the unstable 3D-QSOs has been considered for shortlisting feasible 3D-QSOs for high-latitude observations. Differently from the previous works on the QSO transfers [2,3,6], we utilize the initial guesses found through the preliminary results [2,3] that provide two-impulsive transfer ΔV execution points as finite burns and optimize the transfers between relative QSOs around Phobos. Besides, this paper proposes introducing an indirect optimization method that uses the primer vector [7] of the transfer trajectories to investigate whether intermediate maneuver or initial/final coasting times along the trajectories can minimize the total ΔV cost between the transfers.

References

- Kawakatsu et al, "Mission Definition of Martian Moons eXploration (MMX)", 70th IAC, Washington DC, USA, 2019.
- 2. Pushparaj et al, "Transfers around Phobos via bifurcated retrograde orbits: Applications to Martian Moons eXploration mission", Acta Astronautica, 180, 70-80, 2021.
- 3. Pushparaj et al, "Transfers around Phobos using invariant manifolds of unstable Quasi-Satellite Orbits", 71st IAC, CyberSpace Edition, 2020.
- Chen et al, "Effective Stability of Quasi-Satellite Orbits in the Spatial Problem for Phobos Exploration", Journal of Guidance, Control, and Dynamics, 43 (12), 2309-2320, 2020.
- 5. Nakamiya and Kawakatsu, "Maintenance of Halo Orbits Under the Thrusting Constraints", Journal of Guidance, Control, and Dynamics, 35 (4), 1224-1229, 2012.
- Canalias et al, "Transfer between planar and three-dimensional Quasi Satellite Orbits in the vicinity of Phobos", AAS/AIAA Space Flight Mechanics Meeting, Hawaii, USA, 2019.

7. Russell, "Primer Vector Theory Applied to Global Low-Thrust Trade Studies", Journal of Guidance, Control, and Dynamics. 30 (2), 460-472, 2007.