IAF ASTRODYNAMICS SYMPOSIUM (C1) Attitude Dynamics (1) (1)

Author: Mr. Jan Loettgen School of Engineering, University of Glasgow, United Kingdom

Mr. Joe Gibbs School of Engineering, University of Glasgow, United Kingdom Mr. Robert Gordon University of Glasgow, United Kingdom

DEEP REINFORCEMENT LEARNING-BASED GAIN SCHEDULING FOR ATTITUDE CONTROL OF MICROSATELLITES WITH CHANGING INERTIA

Abstract

Future satellite platforms will be designed to perform a variety of in-orbit tasks including debris capture, deployment of smaller satellites, assembly and manufacture, and use of appendages such as robotic arms. These activities result in time-changing inertia properties of the platform and, as a result, adaptive control techniques will be required to enable traditional attitude regulation and tracking modes. Typical control architectures implemented on microsatellites with fixed inertia matrices utilise Proportional-Derivative (PD) controllers using quaternion and body rate feedback, with attitude information provided by a suitable state estimator. These controllers are tuned to a single operating point and therefore performance will change depending on the changes to the platform configuration, whether through the use of a robotic arm or deployable appendages. Gain scheduling is a popular adaptive control technique that involves selecting operating points and generating gains that the controller can switch between based on a suitable switching parameter. This allows for performance to be tuned at each operating point for systems with unknown or changing parameters. In this paper we develop a deep reinforcement learning (DRL) agent to dynamically adjust the controller gains when performing attitude tracking and regulation of a microsatellite with a time-varying inertia matrix. A Proximal Policy Optimisation (PPO) algorithm is used to train the agent in a simulated environment, using a 6U Cubesat as the baseline spacecraft. The proposed continuous-adaptive control scheme is demonstrated on single scenarios and through Monte-Carlo analysis to demonstrate the robustness for attitude tracking and regulation. Performance of the DRL gain-scheduled PD controller is compared to a baseline PD controller tuned to a single operating point and a fuzzy logic gain-scheduled control scheme for attitude tracking and regulation scenarios for the satellite platform.