IISL COLLOQUIUM ON THE LAW OF OUTER SPACE (E7) UNCOPUOS and ITU Registration of Large Constellations (2)

Author: Mr. Thomas Green Space Industry Association of Australia, Australia

Dr. Patrick Neumann Australia Mr. Thomas Cullum Space Industry Association of Australia, Australia Mr. Trevor Sandlin United States

MANAGEMENT OF ORBITAL MANOEUVRES FOR SATELLITE CONSTELLATIONS AND COMMERCIAL SPACE ACTIVITIES

Abstract

On 2 September 2019, the European Space Agency's Aeolus Earth observation satellite was required to make an immediate axial shift — commonly known as a 'delta-V' manoeuvre — to avoid collision with SpaceX's Starlink-44 satellite, which had lowered its orbital plane for system testing. Aeolus had been on-orbit at an altitude of approximately 320 kilometres above sea level for nine months prior to Starlink-44 suddenly dropping its orbit from a higher orbital plane without prior consultation with the ESA. Although SpaceX was notified of the imminent collision risk posed by changing Starlink-44's orbit to within the same altitude of Aeolus, SpaceX refused to perform a delta-v manoeuvre to change position, thereby requiring the ESA to fire Aeolus' thrusters to change orbit to avoid collision with Starlink-44. On 3 December 2021 — two years after the Aeolus near-miss — the People's Republic of China filed a note verbale to UNOOSA, detailing two instances of performing delta-v safety manoeuvres for its crewed platform the Tiangong space station to avoid collisions with satellites. The first instance occurred on 1 July 2021 after Starlink-1095 had dropped its altitude and orbit from approximately 555km above sea level to the Tiangong's orbit of 382 kilometres thereby causing a collision risk. Tiangong was subsequently required to expend propellent to preform manoeuvres to avoid the risk of collision with Starlink-1095 which failed to adjust course. The second instance of near-miss occurred on 21 October 2021 when Starlink-2305, also within Tiangong's orbital plane, performed erratic manoeuvres that caused Tiangong to once again expend propellent to perform a delta-v safety manoeuvre, thereby creating a safe zone between the two objects. Central to the issues facing both Aeolus and Tiangong is one party having to take the burden of performing a delta-v manoeuvre to change course. Spacecraft are equipped with a finite supply of pro- pellant, thereby providing a limited amount of delta-v safety manoeuvres that can be performed before the propellant is exhausted. Where a propellent is exhausted, or near exhaustion, a spacecraft's mission profile may be severely degraded, and it may have to be de-orbited. This paper will consider the liabilities of one party having to be compelled to frequently expend propellent to avoid collision due to a second party's action, or failure to act, and propose regulatory solutions and a best-practice approach to mitigating undue propellant expenditure and improved safety in orbital planes.