IAF SPACE EXPLORATION SYMPOSIUM (A3) Interactive Presentations - IAF SPACE EXPLORATION SYMPOSIUM (IP)

Author: Dr. Beverly Kemmerer National Aeronautics and Space Administration (NASA), United States

DEVELOPMENT OF THE VERTICAL LUNAR REGOLITH CONVEYOR (VLRC) TECHNOLOGY

Abstract

Regolith conveying will be essential for delivering granular material to In-Situ Resource Utilization (ISRU) regolith processing plants for resource extraction on the Moon. Mission costs require low mass, low power solutions for regolith delivery. Spiral, vibratory conveyors are a highly matured technology used in industry to convey granular material vertically. Vibratory conveyors are lower power than screw conveyors, less susceptible to complications from cohesive or abrasive materials, can handle a wide range of particle sizes, can size sort particles, and are vacuum compatible. The Vertical Lunar Regolith Conveyor (VLRC) is a regolith conveying technology being developed at NASA Kennedy Space Center (KSC). The VLRC is a spiral, vibratory conveyor that is 1 meter in height and is designed to operate in vacuum conditions. The VLRC vibrating conveyor uses two eccentric weight motors to generate the needed out-ofbalance vibration and motion to convey the granular material vertically along the spiral conveyor surface. Additionally, the VLRC can be modified to accommodate a stick-slip conveying method, to directly compare the conveying rate and power consumption of the two separate methods in vacuum. The VLRC is designed to convey lunar regolith simulant at a minimum rate of 1 kg/min. The VLRC is equipped with accelerometers and a load cell to measure the conveyor motion and the granular material convey rate in vacuum. The work presented here details KSC's past work on small scale VLRC experiments, the 1-meter scale VLRC design, and the laboratory testing performed with the VLRC technology.